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Boson—Fermion Correspondence on the Circle via
Quantum Stochastic Calculus’

R. L. Hudson?
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The quantum stochastic differential formula dB = (—1)*dA, known to relate
boson and fermion fields A and B, respectively, on the Fock space over LA(R,),
is shown to hold in amodified form in a Fock space associated with the nontrivial
complex line bundle over the circle S

1. INTRODUCTION

One of the most striking applications of quantum stochastic calculus
(Hudson et al. (1984); Parthasarathy (1992)) has been to relating boson and
fermion fields. The quantum stochastic differentia formula

dB = (—1) dA ()

connects the Fock representation of the canonical commutation and anticom-
mutation relations (CCR and CAR) over the test function space L%(R,) (Hud-
son et al. (1986)). Here A and B are the boson and fermion annihilation
processes

At = alxo.), B(t) = b(x{o.q9) (12

where xo,q denotes the indicator function of the interval [0, t] and A is the
gauge or number process of quantum stochastic calculus; equivalently, P =
(—1)" isthe parity process, so that P(t) Z,-grades the Fock space up to time
t. Boson and fermion annhilation and creation fields can be constructed by
the stochastic integral prescription
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a(f) = deA, a'(f) = ffdA*

b(f) = J fdB,  bi(f) = deBTf e LAR,)

These satisfy the CCR and CAR
[a(f), a(@)] = 0, [a(f), a'(9)] = (f, 91
{b(f,b(@)} =0,  {b(f),b(g)} = (f, 91

for arbitrary f, g € L%(R,), and constitute the Fock representations of the
CCR and CAR, respectively in so far as the vacuum vector is annihilated by
both sets of annihilation operators and is cyclic for both sets of creation
operators and the existence of a cyclic, annihilated vacuum characterizes
both Fock representations up to unitary equivalence.

Boson—fermion unification schemes also arise in the theory of loop
groups (Pressley et al. (1986)). Commonly the representations of the CAR
which occur are not Fock representations, but are of the form

be(f) = b(Ef) + b'(E™)

where E is a certain projector acting on the test-function space (Carey et al.
(1987); Ruijemaars (1989)). Moreover, the CCR representation which occurs
is over a different Hilbert space from that of the CAR. It is tempting to
speculate that such unification schemes are similarly describable in the lan-
guage of quantum stochastic calculus and that the use of “kinks” or “blips’
(Pressley et al. (1986)) may be thereby avoided in the boson-to-fermion
transition. While we are not yet able to accomplish this in the non-Fock
context of the existing literature, we shall show in this paper that it can be
done for Fock representations.

In one sense this is surprising, since a program to use, in effect, circular
time in stochastic calculus is seriously obstructed by the absence of a fully
coherent notion of adaptedness.

In a second sense our result isless surprising, even heuristically inevita:
ble. Regarding R, as a covering space for the circle

S = R./2xN

we may think probabilistically that, astimet increases from the initial value
0, our system does not “know” until t reaches the value 2 whether time is
circular or linear, and therefore the formula (1.1) ought to be valid aso in
the circular case at least for t < 2. However, when t reaches 21, whereas
naively we would expect (1.1) to generate the circular periodicity in circular
time, it is evident that it does not do so; a factor (—1)*®™ intrudes. Because
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the square of this parity factor is the identity, a second circuit of the circle
corrects it. Thus the correct Fock boson—fermion unification scheme lives
on adouble covering of the circle and the appropriate language for itsrigorous
description is that of a Fock space of square-integrable sections of a line
bundle over S'. Once this bundle has been identified, the detailed working
out is comparatively straightforward.

Inwhat followswe identify the circle with the space of complex numbers
of unit modulus:

S={zeC |74 =1

The argument of z € S is the real number 6 satisfying 0 = 6 < 2w such
that z = |z| €°. Hilbert space inner products, denoted (-, -), are aways linear
on the right; al Hilbert spaces are complex.

2. A FOCK SPACE OF SQUARE-INTEGRABLE SECTIONS

We denote by 1) the Hilbert space of measurable square-integrable func-
tionsf: S - C satisfying

f@ = —f(-2, zeS 2.1)

Though it is unnecessary for understanding what follows, we observe
that fy comprises the square-integrabl e sections of the nontrivial complex line
bundle over St associated with the principal Z,-bundle & formed from the
action of the group Z, = {1, —1} on S in which the elements 1 act by
multiplication. The base space S/7, is identified with S' in such a way that
¢ becomes a double covering of S by S by identifying each point {z, —z}
e SYZ, with 2 € S If Z, acts on C, also by multiplication, we obtain the
associated vector bundle £[C], of which the square-integrable sections are
identified with functions f: St - C satisfying (2.1) by (Isham (1989), theo-
rems, p. 149). This bundle-theoretic viewpoint becomes important for multidi-
mensional generalizations.

For t e [0, 2m) we denote by

h=0DY (22)

the canonical decomposition of §j into the direct sum of the subspaces [); and
bt comprising elements which vanish on the arcs

{ze St0=agz<it} and {zeS:it=agz<m}

respectively [and consequently also on
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{zeSim=agz<m + 3t} and
{zeSim+U=agz<2u}
respectively, in view of (2.1)]. We denote by x; the element of f
{ 1, O=agz<it
Xt =

-1, w=agz<mw+43t te]l0 2w (2.3
0, otherwise
and by p, the self-adjoint unitary operator of multiplication by (—1)x. Note
that this does indeed map | to itself.

Now let F() be the Fock space over [), which is conveniently defined
as the closed linear span of the exponential vectors e(f), f e [), satisfying

(e(f), e(@)x = exp(f, 9y
Corresponding to the decomposition (2.2) we may write
F(0) = F(bh) ® F(H') (2.4)
where F(0),) and F(5") are the Fock spaces over 1y, and b, respectively, and
&(f) = e(f) ® &(f)
wheref = (f;, ') in the decomposition (2.2). The Fock annihilation operators
Aqt) = a(x,) are defined by the actions
t/2
As(t)e(f)=<xt,f>e(f)=2j f(e”) do e(f) (2.5)
0

Together with their adjoints, which act on the exponential domain as

AYDE() = & et + ex)

e=0
they form the circular Boson annihilation and creation processes
As = (Aqb), t e [0, 2m)), AL = (A1), t € [0, 2m))

The circular parity process Pg consists of the self-adjoint unitary second
quantizations of the operators py, thus P4(t) acts on exponential vectors as

Ps)e(f) = e(pf)
3. AN ISOMETRY
Consider the map w: ) - L?(R,) given by

jt/2 - -
W) = {‘;(e b 9=t=em

W is isometric since
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2
WPz, = J IH(@)[2 dt
0

—2 Jﬂ (€92 ds
0
= IIfI
Hence its second quantization W, defined on exponentia vectors by
We(f = ewf), felb
is an isometry from % to the Fock space #(L%(R,)) over LR,). The adjoint

W+ of W is similarly the second quantization of the co-isometry w*: L%(R,)
- b defined by

O [f(e0), 0O=0<m
wri(e”) = {—f(Z(e —q), m=0<2m

The usua annihilation, creation, and number processes A, A', and A are
defined in %(L4(R,)) by their actions on exponential vectors

Ae(f) = J f(3) ds e(f)
0

ATOK(T) = < &(f + exio)

e=0

Ae(f) = < efeiont)

=0
Here x(oq is the indicator function of the interval [0, t].
Theorem3.1. For 0 =t < 2w

WrA(DW = Ag(t) (3.2)
WrATW = AL(t) (3.2)
W (—1)AOW = Pg(t) (3.3)

Proof. We verify (3.1) by checking actions on exponential vectors, thus,
forfe b

WFADWE(f) = WF fwf(s) ds e(wf)

0

= th(éﬂ) ds e(f)

0
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/2
= ZJ f(€°) do e(f)

0
= Adt)e(f)

by (2.5). Evidently (3.2) follows from (3.1) by taking adjoints. For (3.3)
we have

W (~DAOWK(F) = Wre((— 10w
- e(n)
= Pgt)e(f). =

4. BOSON-FERMION UNIFICATION ON THE CIRCLE
The stochastic integral prescription

b(f) = J -1 dA®)

b'(f) = J f(s)(—1)"©® dA'(s)
generates the Fock representation of the CAR over L? (R,) (Hudson et al.
(1986)). In particular, the Fermion annihilation and creation processes
B = (b(xjo9), t € Ry), B" = (b'(xj0.0), t € R4)
satisfy
dB = (—1)" dA, dB' = (—1)* dA" 4.1

We use the isometry W of Section 3 to transfer this structure to the Fock
space F(b).

Theorem 4.1. The operators defined for f € §) by
by(f) = WrbWF)W,  bi(f) = Wrbf(wf)W

together with the vacuum vector e(0), constitute the Fock representation of
the CAR over §). That, is they satisfy

(@ {bgf),bgg)} =0, {byf),big)} =<(f,9p1, fgeh
(b) bgf)e(0)=0, febh
© {bYf)...bYf)e0),n=01 ... f,...,f e b}
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istotal in F(h)
Proof. We note first that, corresponding to the canonical factorization
F(LAR) = F(LIH0, 2m)) @ F(L[2m, =)
the operator WW* takes the form
WW* = 18 [e(0))e(0)]

where |e(0)Xe(0)| is the projector onto the vacuum €(0) in F(L 2w, «)).
Since w maps ) onto L?[0, 2m), the operator b(wf) takes the form b,,.(wf)
® 1 in the same decomposition, and g — b,.(g) is the Fock representation
of the CAR over L[0, 2m]. It follows that

{bg(f), by(@)} = {W¥bo(Wf) ® IW, W¥b,, f(wg) ® 1W}
= W¥({ b (WF), bon(Wg)} ® |e(0))e(0)[)W
=0

and similarly

{bg(f), bYQ)} = W*({bon(wf), bi.(wg)} ® | e(0))e(0))W
= W+ ((wf, wg) 1 ® [e(0))e(0)))W
=(f, gy WWWW
=(f,g1

so we have the CAR. Also,
bs(f)e(0) = W*b(wf)We(0)
= Web(wf)e(wo)
= Web(wf)e(0)
=0

by the vacuum annihilation property of the Fock representation b over L2(R.).
Finally, we have

bYfo) ... bYf)e(0) = Wrbhi (W) ® [e(0))Xe(0)|WWH by (Whn—1)
® |e(0)Xe(0)|W
X . Webr(wiy) © [e(0))(e(0)|We(0)
= Wrblo(wy) . . . bi(wf)&(0) ® &(0)
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But the vacuum e(0) in F(L?[0, 2]) is cyclic for the representation b,,, of
the CAR over L?[0, 27]. Hence the vectors of the form

bl (wf) . .. bi.(wf)e(0) ® &0), n=01...,f,....,f,eb

aretotal in the range of W, on which W* acts isometrically, thus transforming
this total set into atotal set in () as required. =

Introducing the fermion annihilation and creation processes Bs and B
defined by

Bs(t) = bs(x),  BYt) = bil(xo)
where x; is given by (2.3), we may write formally, in view of (3.3) and (4.1),
dBS = PS dAs, dBT = PS dAg

In fact, atheory of stochastic integrals against dAs and dA§ as integrators
can be constructed directly, in imitation of (Hudson et al. (1984)). However,
it is more economical to derive the boson—fermion unification on the circle
from that on the line.
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